MATH 245 F17, Exam 1 Solutions

1. Carefully define the following terms: \leq (for integers, as defined in Chapter 1), factorial, Associativity theorem (for propositions), Distributivity theorem (for propositions).

Let a, b be integers. We say that $a \leq b$ if $b - a \in \mathbb{N}_0$. The factorial is a function from \mathbb{N}_0 to \mathbb{Z} (or \mathbb{N}), denoted by !, defined by: 0! = 1 and $n! = (n - 1)! \cdot n$ (for $n \geq 1$). The Associativity theorem says: Let p, q, r be propositions. Then $(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$ and also $(p \vee q) \vee r \equiv p \vee (q \vee r)$. The Distributivity theorem says: Let p, q, r be propositions. Then $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$ and also $p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$.

2. Carefully define the following terms: Addition semantic theorem, Contrapositive Proof theorem, Direct Proof, converse.

The Addition semantic theorem states that for any propositions p, q, we have $p \vdash p \lor q$. The Contrapositive Proof theorem states that for any propositions p, q, if $(\neg q) \vdash (\neg p)$ is valid, then $p \rightarrow q$ is T. The Direct Proof theorem states that for any propositions p, q, if $p \vdash q$ is valid, then $p \rightarrow q$ is T. The converse of conditional proposition $p \rightarrow q$ is $q \rightarrow p$.

- 3. Let a, b be odd. Prove that 4a 3b is odd. Because a is odd, there is integer c with a = 2c + 1. Because b is odd there is integer d with b = 2d + 1. Now, 4a - 3b = 4(2c + 1) - 3(2d + 1) = 8c + 4 - 6d - 3 = 2(4c - 3d) + 1. Because 4c - 3d is an integer, 4a - 3b is odd.
- 4. Suppose that a|b. Prove that a|(4a 3b). Because a|b, there is integer c with b = ca. Now, 4a - 3b = 4a - 3(ca) = a(4 - 3c). Because 4 - 3c is an integer, a|(4a - 3b).
- 5. Simplify $\neg((p \to q) \lor (p \to r))$ to use only \neg, \lor, \land , and to have only basic propositions negated. Applying De Morgan's law, we get $(\neg(p \to q)) \land (\neg(p \to r))$. Applying a theorem from the book (2.16), we get $(p \land (\neg q)) \land (p \land (\neg r))$. Applying associativity and commutativity of \land several times, we get $(p \land p) \land (\neg q) \land (\neg r)$. Applying a theorem from the book (2.7), we get $p \land (\neg q) \land (\neg r)$.
- 6. Without truth tables, prove the Constructive Dilemma theorem, which states: Let p, q, r, s be propositions. $p \to q, r \to s, p \lor r \vdash q \lor s$.

Because $p \lor r$ is T (by hypothesis), we have two cases: p is T or r is T. If p is T, we apply modus ponens to $p \to q$ to conclude q. We then apply addition to get $q \lor s$. If instead r is T, we apply modus ponens to $r \to s$ to conclude s. We apply addition to get $q \lor s$. In both cases $q \lor s$ is T.

7. State the Conditional Interpretation theorem, and prove it using truth tables.

The CI theorem states:	p	q	$p \to q$	$\neg p$	$q \vee (\neg p)$
Let p, q be propositions. Then $p \to q \equiv q \lor (\neg p)$.	Т	Т	Т	F	Т
Proof: The third and fifth columns in the truth table	Т	\mathbf{F}	F	F	F
at right, as shown, agree. Hence $p \to q \equiv q \lor (\neg p)$.	\mathbf{F}	Т	Т	Т	Т
	\mathbf{F}	\mathbf{F}	Т	т	Т

8. Let $x \in \mathbb{R}$. Suppose that $\lfloor x \rfloor = \lceil x \rceil$. Prove that $x \in \mathbb{Z}$.

First, $\lfloor x \rfloor \leq x$ by definition of floor. Second, $x \leq \lceil x \rceil$ by definition of ceiling. But since $\lfloor x \rfloor = \lceil x \rceil$, in fact $x \leq \lfloor x \rfloor$. Combining with the first fact, $x = \lfloor x \rfloor$. Since $\lfloor x \rfloor$ is an integer, so is x.

9. Prove or disprove: For arbitrary propositions $p, q, (p \downarrow q) \rightarrow (p \uparrow q)$ is a tautology.

Since the fifth column in the truth table at right, as	p	q	$p\downarrow q$	$p\uparrow q$	$(p\downarrow q)\to (p\uparrow q)$
shown, is all T, the proposition $(p \downarrow q) \rightarrow (p \uparrow q)$ is	Т	Т	F	\mathbf{F}	Т
indeed a tautology.	Т	\mathbf{F}	\mathbf{F}	Т	Т
	\mathbf{F}	Т	\mathbf{F}	Т	Т
	\mathbf{F}	\mathbf{F}	Т	Т	Т

10. Prove or disprove: For arbitrary $x \in \mathbb{R}$, if x is irrational then 2x - 1 is irrational.

The statement is true, we provide a contrapositive proof. Suppose that 2x - 1 is rational. Then there are integers a, b, with b nonzero, such that $2x - 1 = \frac{a}{b}$. We have $2x = \frac{a}{b} + 1 = \frac{a+b}{b}$, and $x = \frac{a+b}{2b}$. Now, a + b, 2b are integers, and 2b is nonzero, so x is rational.