MATH 245 F17, Exam 1 Solutions

1. Carefully define the following terms: \leq (for integers, as defined in Chapter 1), factorial, Associativity theorem (for propositions), Distributivity theorem (for propositions).

Let a, b be integers. We say that $a \leq b$ if $b-a \in \mathbb{N}_{0}$. The factorial is a function from \mathbb{N}_{0} to \mathbb{Z} (or \mathbb{N}), denoted by !, defined by: $0!=1$ and $n!=(n-1)!\cdot n($ for $n \geq 1)$. The Associativity theorem says: Let p, q, r be propositions. Then $(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)$ and also $(p \vee q) \vee r \equiv p \vee(q \vee r)$. The Distributivity theorem says: Let p, q, r be propositions. Then $p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$ and also $p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$.
2. Carefully define the following terms: Addition semantic theorem, Contrapositive Proof theorem, Direct Proof, converse.
The Addition semantic theorem states that for any propositions p, q, we have $p \vdash p \vee q$. The Contrapositive Proof theorem states that for any propositions p, q, if $(\neg q) \vdash(\neg p)$ is valid, then $p \rightarrow q$ is T The Direct Proof theorem states that for any propositions p, q, if $p \vdash q$ is valid, then $p \rightarrow q$ is T. The converse of conditional proposition $p \rightarrow q$ is $q \rightarrow p$.
3. Let a, b be odd. Prove that $4 a-3 b$ is odd.

Because a is odd, there is integer c with $a=2 c+1$. Because b is odd there is integer d with $b=2 d+1$. Now, $4 a-3 b=4(2 c+1)-3(2 d+1)=8 c+4-6 d-3=2(4 c-3 d)+1$. Because $4 c-3 d$ is an integer, $4 a-3 b$ is odd.
4. Suppose that $a \mid b$. Prove that $a \mid(4 a-3 b)$.

Because $a \mid b$, there is integer c with $b=c a$. Now, $4 a-3 b=4 a-3(c a)=a(4-3 c)$. Because $4-3 c$ is an integer, $a \mid(4 a-3 b)$.
5. Simplify $\neg((p \rightarrow q) \vee(p \rightarrow r))$ to use only \neg, \vee, \wedge, and to have only basic propositions negated.

Applying De Morgan's law, we get $(\neg(p \rightarrow q)) \wedge(\neg(p \rightarrow r))$. Applying a theorem from the book (2.16), we get $(p \wedge(\neg q)) \wedge(p \wedge(\neg r))$. Applying associativity and commutativity of \wedge several times, we get $(p \wedge p) \wedge(\neg q) \wedge(\neg r)$. Applying a theorem from the book (2.7), we get $p \wedge(\neg q) \wedge(\neg r)$.
6. Without truth tables, prove the Constructive Dilemma theorem, which states: Let p, q, r, s be propositions. $p \rightarrow q, r \rightarrow s, p \vee r \vdash q \vee s$.
Because $p \vee r$ is T (by hypothesis), we have two cases: p is T or r is T. If p is T, we apply modus ponens to $p \rightarrow q$ to conclude q. We then apply addition to get $q \vee s$. If instead r is T, we apply modus ponens to $r \rightarrow s$ to conclude s. We apply addition to get $q \vee s$. In both cases $q \vee s$ is T.
7. State the Conditional Interpretation theorem, and prove it using truth tables.

The CI theorem states:
Let p, q be propositions. Then $p \rightarrow q \equiv q \vee(\neg p)$.
Proof: The third and fifth columns in the truth table at right, as shown, agree. Hence $p \rightarrow q \equiv q \vee(\neg p)$.

p	q	$p \rightarrow q$	$\neg p$	$q \vee(\neg p)$
T	T	T	F	T
T	F	F	F	F
F	T	T	T	T
F	F	T	T	T

8. Let $x \in \mathbb{R}$. Suppose that $\lfloor x\rfloor=\lceil x\rceil$. Prove that $x \in \mathbb{Z}$.

First, $\lfloor x\rfloor \leq x$ by definition of floor. Second, $x \leq\lceil x\rceil$ by definition of ceiling. But since $\lfloor x\rfloor=\lceil x\rceil$, in fact $x \leq\lfloor x\rfloor$. Combining with the first fact, $x=\lfloor x\rfloor$. Since $\lfloor x\rfloor$ is an integer, so is x.
9. Prove or disprove: For arbitrary propositions $p, q,(p \downarrow q) \rightarrow(p \uparrow q)$ is a tautology.

Since the fifth column in the truth table at right, as shown, is all T, the proposition $(p \downarrow q) \rightarrow(p \uparrow q)$ is indeed a tautology.

p	q	$p \downarrow q$	$p \uparrow q$	$(p \downarrow q) \rightarrow(p \uparrow q)$
T	T	F	F	T
T	F	F	T	T
F	T	F	T	T
F	F	T	T	T

10. Prove or disprove: For arbitrary $x \in \mathbb{R}$, if x is irrational then $2 x-1$ is irrational.

The statement is true, we provide a contrapositive proof. Suppose that $2 x-1$ is rational. Then there are integers a, b, with b nonzero, such that $2 x-1=\frac{a}{b}$. We have $2 x=\frac{a}{b}+1=\frac{a+b}{b}$, and $x=\frac{a+b}{2 b}$. Now, $a+b, 2 b$ are integers, and $2 b$ is nonzero, so x is rational.

